Qualitatively Coherent Representation Makes Decision-Making Easier with Binary-Colored Multi-Attribute Tables: An Eye-Tracking Study
نویسندگان
چکیده
We aimed to identify the ways in which coloring cells affected decision-making in the context of binary-colored multi-attribute tables, using eye movement data. In our black-white attribute tables, the value of attributes was limited to two (with a certain threshold for each attribute) and each cell of the table was colored either black or white on the white background. We compared the two natural ways of systematic color assignment: "quantitatively coherent" ways and "qualitatively coherent" ways (namely, the ways in which the black-white distinction represented the quantitative amount distinction, and the ways in which the black-white distinction represented the quality distinction). The former consists of the following two types: (Type 1) "larger is black," where the larger value-level was represented by black, and "smaller is white," and (Type 2) "smaller is black." The latter consisted of the following two types: (Type 3) "better is black," and (Type 4) "worse is black." We obtained the following two findings. [Result 1] The qualitatively coherent black-white tables (Types 3 and 4) made decision-making easier than the quantitatively coherent ones (Types 1 and 2). [Result 2] Among the two qualitatively coherent types, the "black is better" tables (Type 3) made decision making easier; in fact, the participants focused on the more important (black) cells in the case of "black is better" tables (Type 3) while they did not focus enough on the more important (white) ones in the case of the "white is better" tables (Type 4). We also examined some measures of eye movement patterns and showed that these measures supported our hypotheses. The data showed differences in the eye movement patterns between the first and second halves of each trial, which indicated the phased or combined decision strategies taken by the participants.
منابع مشابه
Horizontal representation of a hesitant fuzzy set and its application to multiple attribute decision making
The main aim of this paper is to present a novel method for ranking hesitant fuzzy sets (HFSs) based on transforming HFSs into fuzzy sets (FSs). The idea behind the method is an interesting HFS decomposition which is referred here to as the horizontal representation in the current study. To show the validity of the proposed ranking method, we apply it to solve a multi-attribute decision-making ...
متن کاملA Hybrid Multi-attribute Group Decision Making Method Based on Grey Linguistic 2-tuple
Because of the complexity of decision-making environment, the uncertainty of fuzziness and the uncertainty of grey maybe coexist in the problems of multi-attribute group decision making. In this paper, we study the problems of multi-attribute group decision making with hybrid grey attribute data (the precise values, interval numbers and linguistic fuzzy variables coexist, and each attribute val...
متن کاملMULTI-ATTRIBUTE DECISION MAKING METHOD BASED ON BONFERRONI MEAN OPERATOR and possibility degree OF INTERVAL TYPE-2 TRAPEZOIDAL FUZZY SETS
This paper proposes a new approach based on Bonferroni mean operator and possibility degree to solve fuzzy multi-attribute decision making (FMADM) problems in which the attribute value takes the form of interval type-2 fuzzy numbers. We introduce the concepts of interval possibility mean value and present a new method for calculating the possibility degree of two interval trapezoidal type-2 fuz...
متن کاملConsidering Uncertainty in Modeling Historical Knowledge
Simplifying and structuring qualitatively complex knowledge, quantifying it in a certain way to make it reusable and easily accessible are all aspects that are not new to historians. Computer science is currently approaching a solution to some of these problems, or at least making it easier to work with historical data. In this paper, we propose a historical knowledge representation model takin...
متن کاملTriangular Intuitionistic Fuzzy Triple Bonferroni Harmonic Mean Operators and Application to Multi-attribute Group Decision Making
As an special intuitionistic fuzzy set defined on the real number set, triangular intuitionistic fuzzy number (TIFN) is a fundamental tool for quantifying an ill-known quantity. In order to model the decision maker's overall preference with mandatory requirements, it is necessary to develop some Bonferroni harmonic mean operators for TIFNs which can be used to effectively intergrate the informa...
متن کامل